
Automated Analog Circuit Synthesis using a

Linear Representation

Jason D. Lohn1 and Silvano P. Colombano2

1 Caelum Research Corporation, NASA Ames Research Center,

Mail Stop 269-1, Mo�ett Field, CA 94035-1000, USA

email: jlohn@ptolemy.arc.nasa.gov
2 Computational Sciences Division, NASA Ames Research Center,

Mail Stop 269-1, Mo�ett Field, CA 94035-1000, USA

email: scolombano@mail.arc.nasa.gov

Abstract. We present a method of evolving analog electronic circuits

using a linear representation and a simple unfolding technique. While

this representation excludes a large number of circuit topologies, it is ca-

pable of constructing many of the useful topologies seen in hand-designed

circuits. Our system allows circuit size, circuit topology, and device val-

ues to be evolved. Using a parallel genetic algorithm we present initial

results of our system as applied to two analog �lter design problems.

The modest computational requirements of our system suggest that the

ability to evolve complex analog circuit representations in software is

becoming more approachable on a single engineering workstation.

1 Introduction

Analog circuits are of great importance in electronic system design since the
world is fundamentally analog in nature. While the amount of digital design
activity far outpaces that of analog design, most digital systems require analog
modules for interfacing to the external world. It was recently estimated that ap-
proximately 60% of CMOS-based application-speci�c integrated circuit (ASIC)

designs incorporated analog circuits [1]. With challenging analog circuit design
problems and fewer analog design engineers, there are economic reasons for au-
tomating the analog design process, especially time-to-market considerations.

Techniques for analog circuit design automation began appearing about two
decades ago. These methods incorporated heuristics [13], knowledge-bases [4],
and simulated annealing [11]. E�orts using techniques from evolutionary com-
putation have appeared over the last few years. These include the use of genetic
algorithms (GAs) [5] to select �lter component sizes [6], to select �lter topolo-
gies [3], and to design operational ampli�ers using a small set of topologies [10].
The research of Koza and collaborators [8] on analog circuit synthesis by means of
genetic programming (GP) is likely the most successful approach to date. Unlike
previous systems, the component values, number of components, and the circuit
topologies are evolved. The genetic programming system begins with minimal



knowledge of analog circuit design and creates circuits based on a novel circuit-
encoding technique. Various analog �lter design problems have been solved using
genetic programming (e.g., [9]), and an overview of these techniques, including
eight analog circuit synthesis problems, is found in [8]. A comparison of genetic-
based techniques applied to �lter design appears in [14] and work on evolving
CMOS transistors for function approximation [12] has also recently appeared.

The system we present here was motivated by the genetic programming sys-
tem described above. Our investigation centers on whether a linear representa-
tion and simple unfolding technique, coupled with modest computer resources,
could be e�ective for evolving analog circuits. In the GP system, a hierarchical
representation is manipulated by evolution, and a biologically-inspired encoding
scheme is used to construct circuits. In our system we use a linear genome repre-
sentation and a simple unfolding process to construct circuits. As mentioned, our
current system is topology-constrained, yet such constraints were deemed rea-
sonable since a vast number of circuit topologies are attainable. Our technique
presented below di�ers from the previous GA techniques in that we allow both
topology and component sizes to be evolved. In [14], a GA approach is presented
in which topologies and component values are evolved for circuits containing up
to 15 components. Here we use dynamically-sized representations in the GA so
that circuits containing up to 100 components can be evolved. Using a clus-
ter of six engineering workstations (1996 Sun Ultra), we present evolved circuit
solutions to two �lter design problems.

2 Linear Representation

Circuits are represented in the genetic algorithm as a list of bytecodes which
are interpreted during a simple unfolding process. A �xed number of bytecodes
represent each component as follows: the �rst is the opcode, and the next three
represent the component value. Component value encoding is discussed �rst.

Using three bytes allows the component values to take on one of 2563 values,
a su�ciently �ne-grained resolution. The raw numerical value of these bytes
was then scaled into a reasonable range, depending on the type of component.
Resistor values were scaled sigmoidally between 1 and 100K ohms using 1=(1 +
exp(�1:4(10x�8))) so that roughly 75% of the resistor values were biased to be
less than 10K ohms. Capacitor values were scaled between approximately 10 pF
and 200 �F and inductors between roughly 0.1 mH and 1.5 H.

The opcode is an instruction to execute during circuit construction. In the
current design of our system, we use only \component placement" opcodes
which accomplish placement of resistors, capacitors, and inductors. The �ve basic
opcode types are: x-move-to-new, x-cast-to-previous, x-cast-to-ground, x-cast-
input, x-cast-to-output, where x can be replaced by R (resistor), C (capacitor),
or L (inductor). In a circuit design problem involving only inductors and capac-
itors (an LC circuit), ten opcodes would be available to construct circuits (�ve
for capacitors and �ve for inductors).



The circuit is constructed between �xed input and output terminals as shown
in Fig. 1. An ideal AC input voltage source vs is connected to ground and to a
source resistor Rs. The circuit's output voltage taken across a load resistor Rl.

evolved
circuit

vs

end nodestart node

~

output
voltage

Rl

Rs

Fig. 1. Arti�cially evolved circuit is located between �xed input and output terminals

(vs is an ideal ac voltage source, Rs is the source resistance, Rl is the load resistance).

To construct the circuit, a \current node" register (abbreviated CN; with
\current" used in the sense of present, not electrical current) is used and initial-
ized to the circuit's input node. The unfolding process then proceeds to interpret
each opcode and associated component values, updating the CN register if nec-
essary. The x-move-to-new opcode places one end of component x at the current
node (speci�ed by the CN register) and the other at a newly-created node. The
CN register is then assigned the value of the newly-created node. The \x-cast-
to-" opcodes place one end of component x at the current node and the other
at either the ground, input, output, or previously-created node. After executing
these opcodes, the CN register remains unchanged. The meanings of each op-
code are summarized in Table 1. All �ve opcode types place components into the
circuit, although they could be designed to do other actions as well, e.g., move
without placement.

Opcode Destination Node CN Register

x-move-to-new newly-created node assigned the newly-created node

x-cast-to-previous previous node unchanged

x-cast-to-ground ground node unchanged

x-cast-to-input input node unchanged

x-cast-to-output output node unchanged

Table 1. Summary of opcode types used in current system. x denotes a resistor,

capacitor, or inductor.

The list of bytecodes is a variable-length list (the length is evolved by the
GA). Thus, circuits of various sizes are constructed. When the decoding process



reaches the last component to place in the circuit, we arbitrarily chose to have
the last node (value in CN) connected to the output terminal by a wire. By
doing so, we eliminate unconnected branches.

We had two goals in designing the above encoding scheme. First, we wanted
to see if a very simple set of primitives encoded in a linear fashion could indeed
be used to successfully evolve circuits. Second, we wanted to minimize computer
time during the genetic algorithm run. By keeping the decoding process minimal,
the total time for �tness evaluations is thus reduced. Along the same lines, we
wanted to keep circuit \repair" operations (e.g., removal of unconnected nodes)
to a minimum since these also slow the system down.

The most signi�cant restriction of our technique is that it cannot support
all possible circuit topologies: circuit branches o� of the main \constructing
thread" cannot, in general, contain more than one node (there are some excep-
tions to this). The constructing thread is the sequence of components that are
created by the x-move-to-new opcode. The constructing thread itself can be of
varying lengths and can contain both series and parallel con�gurations. In spite
of these limitations, our system allows creation of circuits with a large variety
of topologies, especially topologies seen in hand-designed circuits (e.g., ladder
constructs). We have lessened the topology restrictions somewhat by allowing
\move-to" opcodes and will report on these e�orts in the future.

3 Genetic Algorithm

The genetic algorithm operates on a population of dynamically-sized bytecode
arrays. In practice we imposed a maximum size of about 400 bytes (100 circuit
components) in order to accommodate population sizes of up to 18,000 indi-
viduals in our GA runs. The crossover and mutation (per locus) rates were set
at 0.8 and 0.2 respectively. An overview of the evaluation process is depicted
in Fig. 2. As in the GP system mentioned above, we used the Berkeley SPICE
circuit simulation program to simulate our circuits. The array of bytecodes was
interpreted in the manner previously described, and resulted in a SPICE netlist
representation. The netlist is processed by SPICE and the output is then used

to compute �tness for the individual. Fitness was calculated as the absolute
value of the di�erence of the individual's output and the target output. These
error values were summed across evaluation points, with error being the distance
between the target and the value the individual produced.

The parallel genetic algorithm implemented uses master/slave style paral-
lelism [2] over a network of UNIX-based computers. A controlling host computer
performs GA functions and distributes a population of bytecoded-individuals to
speci�ed number of worker nodes using socket connections. The worker nodes
decode the individuals into SPICE netlists which are then fed into SPICE via
FIFO pipes to minimize disk activity. Fitness is calculated using SPICE's out-
put, and then sent back to the host. Hundreds of individuals (and �tness scores)
are packaged into a single message so that external network congestion delays are
minimized. The SPICE program itself required little modi�cation since it runs



SPICE
circuit

simulation
decode

bytecodes

netlist

fitness
calculation

Fig. 2. Overview of circuit evaluation process starting with bytecoded representation

and ending with �tness score.

as a separate process. Written in the C programming language, the system cur-
rently runs on Sun workstations and is portable to other UNIX systems (e.g., we
have ported the software to PCs running UNIX). This allows the system to run
on UNIX-based clusters comprised of computers from di�erent manufacturers.

4 Experimental Results

We attempted to evolve two analog �lter circuits. The choice of using passive
analog �lters was inspired by the previous studies and is a good choice for testing
the e�ectiveness of our system for three reasons. First, all components have
two-terminals, the minimum number possible. If the proposed system could not
evolve useful circuits using two-terminaled devices, then attempting to evolve
circuits using more complex components (e.g., transistors) would likely prove
ine�ective. Second, there are no energy sources required within the circuit which
further reduces the complexity. Lastly, �lter design is a well-understood discipline
within circuit design. Its \design space" has been greatly explored [7] which
allows us to compare our evolved designs to well-known designs.

The problems we present below are both low-pass �lters. A low-pass �lter is
a circuit the allows low frequencies to pass through it, but stops high frequen-
cies from doing so. In other words, it \�lters out" frequencies above a speci�ed
frequency. The unshaded area in Fig. 3 depicts the region of operation for low-
pass �lters. Below the frequency fp the input signal is passed to the output,
potentially reduced (attenuated) by Kp decibels (dB). This region is known as
the passband. Above the frequency fs, the input signal is markedly decreased
by Ks decibels. As labeled, this region is called the stopband. Between the pass-
band and stopband the frequency response curve transitions from low to high
attenuation. The parameter located in this region, fc, is known as the cuto�
frequency.



frequency

Kp

fp fs

Ks

fc

passband stopband

at
te

n
u

at
io

n
 (

d
B

)

Fig. 3. Low-pass �lter terminology and speci�cations. The crosshatched regions repre-

sent out-of-speci�cation areas. An example frequency response curve that meets spec-

i�cations is shown.

4.1 Electronic Stethoscope Circuit

The �rst circuit we attempted to evolve is one that is suitable for use in an
electronic stethoscope. In this application, it is desired to �lter out the extra-
neous high-frequency sounds picked up by a microphone which make it di�cult
to listen to (low-frequency) bodily sounds (e.g., a heart beating). As such, the
frequency response speci�cations do not need to be extremely accurate since we
are dealing with audible frequencies and the human ear cannot discern frequen-
cies that are close together. The target frequency response data was taken from
an actual electronic stethoscope, which was built with a cuto� frequency of 796
Hz corresponding to an output voltage of approximately 1 volt. This circuit is
relatively easy to design and so we chose it as our �rst problem to solve.

The GA was allowed to use resistors and capacitors during evolution, re-
sulting in an RC low-pass �lter. The evolved circuit is shown in Fig. 4 and its
frequency response, which matches almost exactly the target is shown in Fig. 5.

4.2 Butterworth Low-pass Filter

The second low-pass �lter we evolved was more di�cult. We chose a circuit that
can be built using a 3rd-order Butterworth �lter [7]. The speci�cations are as
follows:

fp = 925 Hz Kp = 3:0103 dB
fs = 3200 Hz Ks = 22 dB

Such a �lter design can be derived using a ladder structure and component
values found in published tables. The GA was allowed to use capacitors and in-
ductors during evolution, resulting in an LC low-pass �lter. The evolved circuit
that meets these speci�cations is shown in Fig. 6 and its frequency response is



R1 1

+

-
5V

V1 C1 0.000162 671.8973R3 RL

1E14

5.806489

R2

Fig. 4. Evolved low-pass �lter for use in an electronic stethoscope (units are ohms and

farads).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000

V
ol

ts

Frequency (Hz)

Target
Output

Fig. 5. Nearly identical frequency response curves for evolved and actual electronic

stethoscope circuit. The frequency axis is scaled logarithmically.



shown in Fig. 7. It was found in generation 22 of a GA run that lasted approxi-
mately four hours using six Sun Ultra workstations working in parallel.

C2

3.0245E-7

0.16886

L4Rs
1K

+

-
2V

V1

C1

0.0000780.77637

L2
L5

0.50176

0.28838

L1

1K
RL

1.14991

L3

Fig. 6. Evolved 3rd-order Butterworth low-pass �lter (units are ohms, farads, and

henries).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

V
ol

ts

Frequency (Hz)

Kp=3.01 dB Ks=22 dB

Fig. 7. Frequency response curve for evolved 3rd-order Butterworth low-pass �lter. At-

tenuation speci�cations are also shown. The frequency axis is a scaled logarithmically.

5 Discussion

We have shown that a genetic algorithm using a simple linear circuit represen-
tation is capable of evolving two circuits of low to medium di�culty. The circuit
construction method devised uses a very simple set of primitives encoded in a



linear fashion. Such a method helps to minimize the computer time required to
evolve circuits by keeping the decoding and repairing processes shorter. Although
this technique is topology-limited, the ability of our system to produce useful
circuits was demonstrated. It is likely that these topological space restrictions
are favorable to many �lter designs, especially �lters that are known to have less
complex branching patterns (e.g., ladder structures). We intend to build upon
this technique to allow for greater topologies and three-terminal devices such
as transistors. With the previous successes in evolving analog circuits, and the
encouraging early results of our system, we are optimistic that a subset of ana-
log circuit design tasks may be routinely accomplished by means of evolutionary
computation in the future.

6 Acknowledgments

The authors would like to thank M. Lohn, D. Stassinopoulos, G. Haith, and the
anonymous reviewers for their helpful suggestions and comments.

References

1. G. Gielen, W. Sansen, Symbolic Analysis for Automated Design of Analog Inte-

grated Circuits, Boston, MA: Kluwer, 1991.

2. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-

ing, Addison-Wesley, Reading, Mass, 1989.

3. J.B. Grimbleby, \Automatic Analogue Network Synthesis using Genetic Algo-

rithms," Proc. First Int. Conf. Genetic Algorithms in Engineering Systems: In-

novations and Applications (GALESIA), 1995, pp. 53-58.

4. R. Harjani, R.A. Rutenbar, L.R. Carey, \A Prototype Framework for Knowledge-

Based Analog Circuit Synthesis," Proc. 24th Design Automation Conf., 1987.

5. J.H. Holland, Adaptation in Natural and Arti�cial Systems, Univ. of Michigan

Press, Ann Arbor, 1975.

6. D.H. Horrocks, Y.M.A. Khalifa, \Genetically Derived Filters using Preferred Value

Components," Proc. IEE Colloq. on Linear Analogue Circuits and Systems, Ox-

ford, UK, 1994.

7. L.P. Huelsman, Active and Passive Analog Filter Design, New York: McGraw-Hill,

1993.

8. J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, F. Dunlap, \Automated Synthesis

of Analog Electrical Circuits by Means of Genetic Programming," IEEE Trans. on

Evolutionary Computation, vol. 1, no. 2, July, 1997, pp. 109{128.

9. J.R. Koza, F.H. Bennett, J.D. Lohn, F. Dunlap, M.A. Keane, D. Andre, \Use

of Architecture-Altering Operations to Dynamically Adapt a Three-Way Analog

Source Identi�cation Circuit to Accommodate a New Source," in Genetic Program-

ming 1997 Conference, J.R. Koza, K.Deb, M.Dorigo, D.B. Fogel, M. Garzon, H.

Iba, and R.L. Riolo, (eds), Morgan Kaufmann, 1997, pp. 213{221.

10. M.W. Kruiskamp, Analog Design Automation using Genetic Algorithms and Poly-

topes, Ph.D. Thesis, Dept. of Elect. Engr., Eindhoven University of Technology,

Eindhoven, The Netherlands, 1996.



11. E.S. Ochotta, R.A. Rutenbar, L.R. Carley, \Synthesis of High-Performance Analog

Circuits in ASTRX/OBLX," IEEE Trans. Computer-Aided Design, vol. 15, pp.

273{294, 1996.

12. A. Stoica, \On Hardware Evolvability and Levels of Granularity," Proc. 1997 Int.

Conf. Intell. Systems and Semiotics, 1997, pp. 244-247.

13. G.J. Sussman, R.M. Stallman, \Heuristic Techniques in Computer-Aided Circuit

Analysis," IEEE Trans. Circuits and Systems, vol. 22, 1975.

14. R.S. Zebulum, M.A. Pacheco, M. Vellasco, \Comparison of Di�erent Evolution-

ary Methodologies Applied to Electronic Filter Design," 1998 IEEE Int. Conf. on

Evolutionary Computation, Piscataway, NJ: IEEE Press, 1998, pp. 434{439.


